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Abstract

In this paper, we propose a generic and efficient content-
based image retrieval architecture. We compute ”real”
interimage distances for an initial subset of the images
that are to be stored into an image database. For com-
puting real interimage distances we use image content
based on a low level feature. High-level image feature
vectors are computed from the real interimage distances
in such a way that the interimage distances are preserved
in the feature space defined by the high-level features.
These feature vectors are used to represent the images
in the initial subset as well as to generate a training set.
This training set is used to compute the feature vector
of a query image during image retrieval and for deriving
the feature vectors for images not in the initial subset.
On-line retrieval is performed using the distances of the
feature vector of the query image to feature vectors of the
database images as estimates of the corresponding real
distances. We have conducted experiments using color
as the low level feature. Our results show a substantial
reduction in the size of the feature space, which leads
to highly efficient on-line retrieval. We also demonstrate
that a high retrieval accuracy is achieved.

Keywords: Image database, image retrieval, color, ef-
ficient, generic.

1 Introduction

A content-based image retrieval (CBIR) system uses in-
formation from the content of images for retrieval and
helps the user retrieve images relevant to the contents
of a query image. For a given query image, its content
is directly compared with that of the images in the im-
age database and a desired number of images close to
the query image are retrieved. By content, we mean
computable and low level features, such as color, shape,
texture, object centroids and boundaries. It is very dif-
ficult to extract semantics associated with a given image
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Approaches to CBIR can be classified into two broad
classes of attribute-based and feature-based. In the
attribute-based approach, the image contents are mod-
eled as a set of attributes extracted manually or semi-
automatically and managed within the framework of
conventional DBMS [1]. Images are represented at a
very high-level of abstraction. Queries are also specified
using these attributes. Due to the high level of abstrac-
tion in image representation, it is difficult to confront
the image database with ad hoc queries such as “Give
me all images with red color” or “Give me all images of
airplane-like shape”.

In a feature-based CBIR, images are represented by
their contents and the comparison is made between
the contents of the query and the images in the im-
age database. This approach is very computation in-
tensive and may not be really effective with respect to
response time. The feature-based approach can be fur-
ther classified based on the dependence of the retrieval
process on the particular low level feature selected and
the degree of automation. In our context, a generic
system is defined as one, where the processing steps
remain largely the same for different choices of image
properties. Approaches to CBIR can be either semi-
automatic non-generic, semi-automatic generic, auto-
matic non-generic, or automatic generic. The ultimate
goal of the feature-based approach is a generic and fully
automatic approach. In such an approach, feature ex-
traction and indexing of images based on features are
done with almost no human involvement to get an ac-
ceptable response time and the use of various low level
image properties does not require any change in the re-
trieval process.

We have reported image retrieval specific to texture
only in [2]. We have also described a software archi-
tecture, in [3], for a generic and efficient feature-based
CBIR using color, shape, and texture properties. In this
paper, we experimentally evaluate our approach using
color as the low level image property.

This paper is organized into six sections. Section 2
discusses related work and our motivation. In the next
section, we define the problem formally. Sections 4 and 5
cover our approach and experimental work. The results
are summarized in section 6.



2 Related Work and Motivation

A review of the literature [4, 5] shows that color has
been used extensively as a discriminating feature in IR
problems. However, the use of “real” distances using
color in IR problems is computationally very expensive,
since it has to account for the effect of color correlations.

Chang et al. [4] used color as a discriminating fea-
ture for image retrieval. For a given query, the images
in the image database are ranked on the basis of real
distance between the query image and the images in the
image database. Hence the on-line retrieval is very com-
putationally intensive. Faloutsos et al. [5], while using
low level features such as color, have tried to make it
more efficient by using estimated distance instead of real
distance. They reduce the search space by eliminating
many images from consideration by using an estimated
distance in such a way that the lower bound lemma is
satisfied. This lemma does not allow the elimination of
relevant images, but may retain many non-relevant im-
ages. Then they perform the search on the basis of real
distance in the search space with fewer images. Also,
the use of estimated distance does not usually preserve
the order induced by the real distance among the im-
ages. Hence, they cannot perform nearest neighbor type
searches. Some other researchers have tried to make the
retrieval efficient at the cost of accuracy by reducing the
image resolution [6]. However, when images are quan-
tized to a lower resolution, there is a very strong possibil-
ity that some of the important color information relevant
for differentiation is lost.

Our proposed method differs from earlier work with re-
spect to the following: We identify a subset of all images,
called the initial image set, and use real distances among
images in this set to compute high-level image features
and to generate a training set. We use the training set
to compute the feature vector corresponding to a query
image. This requires on-line computation of real dis-
tances from the query image to only the images in the
training set. In contrast, Faloutsos et al. [5] compute
real distances of a query image to all images that are
not filtered out by means of their estimated distances.
Our estimated distance is more accurate compared to
the estimated distance used by Faloutsos et al. [5] in the
sense that the ordering of images corresponding to real
distances is better preserved by the proposed method for
estimating distances.

3 Problem Definition

Let us assume that an image database is populated with
a set (or a collection) of images {Op, O1,...,0np_1}. Let
this collection be denoted by U. Let @) be a query image.

Let the real interimage distance II, between any two
images O;, and Oj, one of which may be (), be denoted
by II(O;,0;). The user can specify a query to retrieve

a number of relevant images. Let ¢ be the number of
images, closest to the query image @, that the user wants
to retrieve, assuming that ¢ < n.

This image retrieval problem can be defined as the
efficient retrieval of the best ¢ images according to II
from a database of n images.

4 Proposed Method

This is based on the work of Goldfarb [7] to bridge the
gap between syntactic and statistical pattern recognition
for classification problems. The whole image database
is divided into an initial and an incremental image set.
The complete image storage and retrieval involves two
phases: database population and image retrieval. The
database population phase uses low level image proper-
ties such as color to compute the real interimage dis-
tances for the images of initial image set. The size of
the initial image set is expected to be much smaller than
that of the image database itself. Starting from the in-
terimage distances the high-level image feature vectors
for these images are computed and at the same time the
training set is generated (see section 3.2). These fea-
ture vectors have considerably fewer features compared
to an intermediate representation of images based on low
level image properties and the extent to which they pre-
serve the real interimage distances among the images,
can be controlled. The training set has even fewer im-
ages compared to the initial image set. Images from the
incremental image set are added to the database using
their real distances to only the images in this training
set. In the image retrieval phase, we obtain the low level
representation of a query image, compute its interimage
distance from the images in the training set, compute
the query feature vector, and perform retrieval accord-
ing to the Euclidean distances between this query feature
vector and the feature vectors of the database images.
[Figure 1 should be inserted here]

Our architecture (Figure 1) is unique with respect to
the generation of the training set during the database
population stage. All the possible low level image pro-
cessing work of feature extraction is performed a priori
at data population time. Only the query processing is
done on-line when the query image becomes available.
This leads to an effective, efficient, and flexible image
retrieval system.

4.1 Theoretical Background

Let P be the subset of images that has been sampled
from the set U to be representative of all possible image
classes. This set of images is referred to as the initial set.
Let |P| = k,where k < n. The value of k should be as
small as possible, in order to achieve efficient training.
According to Goldfarb [7], the dissimilarity between
two objects can be defined as follows: Let a pseudometric



space be a pair (P,II), where P is a set of images and II
is a non negative real-valued mapping;:

I:PxP— R (1)

satisfying the following two conditions:

(a) YO, € P,YO, € P H(Ol,OQ) = H(OQ,Ol)

(by VOe P TII(0,0) =0

The mapping IT is called a pseudometric (or interimage
distance) function. This interimage distance will be used
from this point on and is the only information about
images that will be required in the rest of the image
retrieval process. If the number of images in the initial
set is k (i.e.,|P| = k), then the interdistance matrix D
is defined as

D = (I;)o<i,j<k-1, (2)

IL;; in the above equation is equal to
II(8(0;), (0;)). Here B3, a vector representation of low
level image features, is defined as

B:P = o, (3)

where ¢ is the space of possible representations of low
level image features. For a given O € P, (O) is called
the intermediate representation of O.

According to Goldfarb [7], the following definitions
lead to a theorem proposed by him that lays the con-
dition for preserving the interimage distance of an inter-
distance matrix into the derived feature space.
Definition 1: A pair of non-negative numbers (p, ¢) will
be called the wvector signature of a finite pseudometric
space (P, II), if there exists an isometric embedding

a: (P,I) — R®9) (4)

where II(8(01),8(02)) = || a(01) — a(02) |2
VO1,05 € P, such that for any other similar isometric
embedding of (P,II) into R(™-"2) we have ny > p,ng >
g- The « is called a vector representation of (P,1II).

In other words, (p,q) is the vector signature of a fi-

nite pseudometric space (P,I), if R®% is a minimal
pseudo-Euclidean vector space, within which (P,II) can
be isometrically represented. This idea is illustrated in
[3]. Isometric embedding ensures that there exists a dis-
tance preserving mapping [7]:
Definition 2: Let (P,II) be the pseudometric space de-
fined earlier and let V be a vector space over R of di-
mension k — 1, and let {a;}1<i<k—1 be a basis of such a
vector space. A quadratic form on this vector space is
given by:

(IM3; + ng - ng)ﬂxja (5)

for z = («1,...,2F"1). Here 2 and 27 are the coordi-

nates of  with respect to the standard basis {a;}.

Theorem 1: A finite pseudometric space (P,II) has
the vector signature (p, q), iff the quadratic form given
in definition 2 has the signature (p, q).

Determining whether a quadratic form has a desired
signature requires the use of results on symmetric bilin-
ear forms on (P,II) and their connection to quadratic
forms. The proof of Theorem 1 is given in [8]. A corol-
lary of the theorm 1 is: A finite pseudometric space
(P,II) can be isometrically represented in the Euclidean
m(m = p + ¢)—dimensional space iff the quadratic form
given in Definition 2 is positive and of rank less than m.

4.2 Database Population Phase

Given the interimage distance matrix, ComputeFea-
tureVector procedure (Figure 2) is used to compute
the high-level image feature vectors for images in the
initial set. Let these feature vectors be denoted by
Fo, Fi, ..., Fy_2, Fr_1. This procedure also generates a
training set by calling GenerateTrainingSet() (Figure 3).
The training set is used in the computation of feature
vectors for a query image and for images in the incre-
mental image set.

4.3 Estimation of Distances and Image
Retrieval

Given the query image (), one can readily determine
the orthogonal projection of () onto the vector repre-
sentation space R(®%. ComputeQueryVector() (Figure
4) computes the feature vector of the query image. Fea-
ture vectors of the images in the incremental image set,
which are also computed using the same algorithm, are
denoted by Fy, Fyt1,.-.,Fn_1.

procedure ComputeFeatureVector (distance matrix
D, threshold value tr)

1. From D = (Mij)1<ij<k—1, compute d = 75 ZH

2
i,j=1 Hij

2. Compute symmetric matrix B in the quadratic form as
101 k=1 rr2 k=172 2
bij = 3 [E(Zi=1 I + 3252, 1) — 105 — d]
3. Compute the eigenvalues (characteristic values) of dis-
tance matrix B (QR-Algorithm ).

4. Determine p and g such that p is the # of eigenvalues
> tr and g is the # of eigenvalues < —tr

5. Let C1,C2y uuuen 3 Cpy Cp41y cevnnnns ,Cp+q,0,0,0, ..... ,0 be the
characteristic values of matrix B, such that ¢1 > c2 >
we > cp > 0 and cpt1 < cpy2 < oo < cpyg < 0. They
form the diagonal matrix C of size k — 1 x k — 1.

6. Determine the corresponding orthogonal characteris-
tic vectors (eigenvectors) of matrix B. They are
€15€2, «ennnns , k. Then the matrix E is formed such that e;
are the columns of matrix E. Can keep only m = (p+q)
columns.

7. Compute the matrix M such that M = E x C. The ma-
trix M contains the components of the vector, denoted



as Fj, corresponding to O; in the pseudo Euclidean vec-
tor space R®? under the constructed vector represen-
tation a : (P,II) — R®®

8. Use first m elements from it? column of matrix M to

represent image O; in the pseudo Euclidean vector space
R®a)

9. call GenerateTrainingSet()

endprocedure

Algorithm to Compute Feature Vectors

procedure GenerateTrainingSet ()

1. Compute the Gram matrix G from F;,
using expression G = AZ Ao.

1<i<mby

2. Compute G~ from Gram matrix G.

3. Compute the training set T by multiplying the basis set
Ap by the inverse of Gram matrix. That is, T = A¢G~ 1.

4. Return T

endprocedure
Algorithm to Generate Training Set

Since the matrix T can easily be computed during the
database population phase, the only on-line computa-
tions are those of b;,1 < j < m. This is perfectly feasible
since one has control over the dimension m of the rep-
resentation space. Once the query feature vector Fy is
computed, the estimated distances are given by the Eu-
clidean distance between the query feature vector and
the image vectors.

Procedure ComputeQueryVector(Query Image ,
Image O, Matrix T)

1. b =3 [IP*(8(0), B(O0)) +TI*(B(0;), B(Oo))]
-1 [I1°(B(0), B(0;))] such that B: P — ¢, where ¢ is
the space of possible representations of low level image
features.

2. Determine the orthogonal projection w of O onto the
vector representation space R®%).
such that w =T - b, and where b = (b1, ....,bm)

3. return vector w as the feature vector of the new image.

endprocedure

Algorithm to Compute Query Feature
Vector

It may be noted that the estimated interimage dis-
tance is computed from the high-level feature vectors
of images and not the image representations. Also, the
computation is very inexpensive, as the feature vectors
have a much smaller number of elements. The estimated
interimage distance does preserve the real interimage dis-
tance between two images. It can be used instead of the
real interimage distance for efficient image retrieval.

5 Experiments and Results

Two sets of experiments (EXPT I and EXPT II) were
conducted using color images from the Department of
Water Resources (DWR) repository, maintained at Uni-
versity of California, Berkeley. The purpose of the first
set of experiments was to measure the retrieval efficiency
and retrieval accuracy of the image database system.
The second set of experiments was carried out to study
the effect of the threshold value that we use to determine
the number of high-level image features to be retained
(i.e. the dimensionality of the derived feature space).

We used the RGB color space and a uniform quantiza-
tion method to quantize the images. Most of the display
devices use RGB display and uniform quantization is a
simple method and a good choice in the absence of in-
formation regarding the color distribution of the images.
Uniform quantization can be used in RGB color space
very efficiently. Some of the current image retrieval by
color use single color, color pairs, and color histograms
[4]. Histograms have been widely used in content-based
image retrieval using color properties [4, 5, 6] and is con-
sidered to be very effective, since it provides robustness
with respect to scaling, orientation, perspective, and oc-
clusion.

We used an interimage distance function for retrieval
by image color content, also used by Faloutsos et al.,
Chang el al., and other researchers [4, 5]. The real in-
terimage distance function II(X,Y) between two images
X and Y, can be computed by using equation 6. The
equation 6 can also be written as equation 7.

I(X,Y) = (X - V)IAX -Y) (6)

I(X,Y) = (w: — yi)aij(z; — y;), (M)
0,
where the elements a;; represent the cross correlation
between color ¢ and color j, for 0<4i,j<L-—1,and
X = 3(0x),Y = B(Oy). This compensation takes into
account the fact that colors are usually not orthogonal.
The commonly used value of L is 64 or 256. This distance
function gives the real interimage distance between two
images Ox and Oy [4].

In EXPT I and II, sets of 14 and 32 images were used.
The images were numbered from 0 through 13 in EXPT
I and 0 through 31 in EXPT II. The original images
were in Jpeg format. After decompression, these images
were quantized to 64 colors and histogram representa-
tions for each of the images were derived. From the
histograms, the color correlation matrix and the real in-
terimage distances for all pairs of images were computed
using equation 7. From these interimage distances (in-
terimage matrix), the high-level image feature vectors
were computed. Then ultimately, the estimated inter-
image distance were derived for each image pair. In this
experimental study, all images were used in the initial



image set during the database population stage. That
is, the incremental image set is empty.

We used the R, orm performance measure [9]. This
measure is denoted as Ry, (6°5t7¢) in our context and
is a way of comparing an ordering of images by estimated
distances relative to an ordering of images by real dis-
tances. It reaches the maximum value of 1 if, for all
0;,0; € P, O; being at a higher rank than O; by real
distances implies that O; is placed at a higher rank than
O; according to estimated distances. It should be noted
that the implication is not both ways. A more detailed
discussion of Ryorm can be found in [9].

5.1 EXPT I Results (14 Images)

For ease of presentation, we randomly picked 4 images
to be used as query images and ranked the other images
in the image set, in the order of increasing distance, ac-
cording to both real and estimated interimage distances.

[Table 1 should be Inserted here]

The result is tabulated in Table 1. The first row for
each image in the table gives the ranking based on esti-
mated interimage distances and the second row is based
on the real interimage distances. The table shows that
for all four query images, the rank ordering based on
estimated distances is similar to the one based on real
distances. The retrieved images for these queries can be
found at
www.cacs.usl.edu/Publications/Raghavan /Images.html.
A more detailed analysis is given in [9].

[Table 2 should be Inserted here]

Another approach for evaluating our result is by hav-
ing an expert identify relevant images. For example, for
query image-2, the images that are judged to be rele-
vant are 3, 4, 8, 1, 5, 7, 6, 9, and our retrieval also shows
that the closest images are 3, 4, 8, 5, 1, 7, 9, 6. This
corresponds to all relevant images being ranked ahead of
any non-relevant images. We computed the R,,,.,, of the
ranking using estimated interimage distance with respect
to the real interimage distance and expert provided rank-
ing. The result is very encouraging. The R, oy (6¢57¢%)
with respect to the real distance and the R,,pp, (6652457
with respect to the expert relevance were computed for
these 4 query images and are given in Table 2.

After quantization, the intermediate image representa-
tions had 64 low level features. However, after high level
features were computed, every image was represented by
only six features. This made on-line computation very
efficient. A significant factor that contributes to effi-
ciency is that during the computation of the query image
feature vectors, we did not have to compute its distance
to every image in the database. Instead, we used the
training set generated during the initial database popu-
lation stage.

5.2 EXPT II Results (32 Images)

We experimented with feature space dimensionalities of
1 through 7 and 11 by adjusting the threshold value (tr)
in the ComputeFeatureVector procedure. For each of
these, the estimated interimage distance between each
pair of images were determined.
[Table 3 should be Inserted here]

Treating every image in this set as a query image,
we computed rankings of images in the database cor-
responding to a query image , using the real and the
estimated distances. Subsequently we computed the av-
erage Ry,orm Of the ranking using estimated interimage
distance with respect to the real interimage distance for
different threshold values. The results are tabulated in
Table 3. This table shows the number of features and the
corresponding average R,orn values for all the queries.
It is seen that the R, o value improves when the num-
ber of high-level features increases. The increase is sub-
stantial at low dimensionalities up to 5. Hence, given an
application, we can adapt the computational complexity
to the required retrieval accuracy.

6 Conclusion

We have proposed a generic and efficient automatic
CBIR architecture. Results for EXPT I show that the
dimensionality of the feature space can be substantially
reduced (64 to 6), while preserving real interimage dis-
tances. Ry,,rm of estimated interimage distance with re-
spect to the real interimage distance for all the query
images is better than 0.86. OQur on-line computation for
a given query image is substantially reduced as it needs
to compute the real distances only between the query
image and the images in the training sample. Also, the
retrieval accuracy can be further improved by adjusting
the threshold values as we have seen in EXPT II.

References

[1] V. Gudivada and V. Raghavan, “Content-Based Im-
age Retrieval Systems,” IEEE Computer, vol. 28,
no. 9, pp. 18-22, 1995.

[2] S. K. Choubey and V. V. Raghavan, “Generic and
fully automatic content-based image retrieval us-
ing texture,” in International Conference on Imag-
ing Science, Systems, and Applications (CISST’97),
(Las Vegas, Nevada), pp. 228-237, June-July 1997.

[3] S. K. Choubey and V. V. Raghavan, “Generic and
fully automatic content-based image retrieval ar-
chitecture,” in 10th International Symposium on
Methodologies for Intelligent Systems, (Charlotte,
North Carolina), October 1997. (to appear).



[4]

S. F. Chang, A. Eleftheriadis, and D. Anastas-
siou, “Development of Columbia’s Video on De-
mand Testbed,” International Journal of Image
Communication- Signal Processing, vol. 8, no. 3,
pp- 191-207, 1996.

C. Faloutsos et al., “Efficient and Effective Querying
by Image Content,” Journal of Intelligent Informa-
tion Systems, vol. 3, no. 3, pp. 231-262, 1994.

X. Wan and C. C. J. Kuo, “Color Space Quantization
for Image Retrieval,” in SPIE:Storage and Retrieval
for Still Image and Video Database’96, (SanJose Cal-
ifornia), February 1996.

L. Goldfarb, “A Unified Approach to Pattern Recog-
nition,” Pattern Recognition, vol. 17, no. 5, pp. 575—
582, 1984.

L. Goldfarb, “A New Approach to Pattern Recogni-
tion,” in Progress in Machine Intelligence and Pat-
tern Recognition, eds: L.N. Kanal and A. Rosenfeld,
vol. 2, North Holland Publishing Company, 1985.

S. K. Choubey, Generic and Fully Automatic
Content-Based Image Retrieval Using Color Shape
and Texture. PhD thesis, University of Southwestern
Louisiana Lafayette LA, 1997.



Image ID R1|R2|\R3|R{|R5|R6| R7T| R§| R9| R10 | R11 | R12 | R13 | R14
Z(Image — 2) 2 3 4 8 5 1 7 9 6 10 12 14 13 11

M(Image—2) | 2| 3| 4| 8| 5| 1| 7| 9| 6| 10| 14| 12| 13| 11
Z(Image—4) | 4| 7] 5| 1| 8] 2] o] 12| 14| 3| 10] 6] 13| 11
M(Image—4) | 4| 7| 5| 1| 8| 2| 9| 14| 3| 12| 10| 6| 13| 11
Z(Image —11) | 11 7| 12 8 9 6| 14| 13| 10 5 4 3 1 2
II(Image —11) | 11 712 8| 9| 14| 6| 13| 10 5 4 1 3 2
Z(Image —14) | 14 9| 10| 12 6 7| 13 41 11 1 8 5 3 2
II(Image — 14) | 14 91| 10 6| 12 7| 13 41 11 1 8 5 2 3

Table 1: Comparison of Ranking (Z =Estimated Distance, I =Real Distance)
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Figure 1: An Architecture of the Proposed System

Query ID Ryorm

Rnorm (5estreat) Rnorm (5estusr)
Image-2 0.989 0.93
Image-4 0.98876 0.97
Image-11 0.98876 0.97
Image-14 0.98876 0.81

Table 2: Ry,orms for Selected Queries.



Number of High | Ryorm
Level Features

1 0.5874
0.6593
0.7588
0.8036
0.8568
0.8729
0.8888
1 0.93498
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Table 3: Rporm for EXPT IL



